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The purpose of this study was to screen firstly the potential effects of antcin K (AnK), the main constituent of the fruiting body of
Antrodia camphorata, in vitro and further evaluate the activities andmechanisms in high-fat-diet- (HFD-) inducedmice. Following
8-week HFD-induction, mice were treated with AnK, fenofibrate (Feno), metformin (Metf), or vehicle for 4 weeks afterward. In
C2C12 myotube cells, the membrane GLUT4 and phospho-Akt expressions were higher in insulin and AnK-treated groups than
in the control group. It was observed that AnK-treated mice significantly lowered blood glucose, triglyceride, total cholesterol, and
leptin levels in AnK-treated groups. Of interest, AnK at 40mg/kg/day dosage displayed both antihyperglycemic effect comparable
toMetf (300mg/kg/day) and antihypertriglyceridemic effect comparable to Feno (250mg/kg/day).The combination of significantly
increased skeletal muscular membrane expression levels of glucose transporter 4 (GLUT4) but decreased hepatic glucose-6-
phosphatase (G6 Pase) mRNA levels by AnK thus contributed to a decrease in blood glucose levels. Furthermore, AnK enhanced
phosphorylation of AMP-activated protein kinase (phospho-AMPK) expressions in themuscle and liver. Moreover, AnK treatment
exhibited inhibition of hepatic fatty acid synthase (FAS) but enhancement of fatty acid oxidation peroxisome proliferator-activated
receptor 𝛼 (PPAR𝛼) expression coincident with reduced sterol response element binding protein-1c (SREBP-1c) mRNA levels in the
liver may contribute to decreased plasma triglycerides, hepatic steatosis, and total cholesterol levels. The present findings indicate
that AnK displays an advantageous therapeutic potential for the management of type 2 diabetes and hyperlipidemia.

1. Introduction

Diabetes mellitus hardly occurs in isolation but is most
often part of an array of metabolic abnormalities that
includes insulin resistance, hyperinsulinemia, and hyper-
triglyceridemia.The population of type 2 diabetes prevalence
by 2025 will reach approximately 300 million [1]. Pathogen-
esis of type 2 diabetes has been proposed to display more
than 90% of all diabetes mellitus patients [2]. Type 2 diabetes

mellitus has revealed mechanisms of insulin resistance that
target either impairs in 𝛽-cell function or insulin insensitive
action at adipose tissue, skeletal muscle, or liver tissues.

Antrodia camphorata (Polyporaceae, Aphyllophorales) is
edible as a folk remedy in the treatment of a variety of diseases
in Taiwan. It is rare and expensive because it grows only
on the inner heartwood wall of the endemic evergreen Cin-
namomum kanehirai. Themycelia, filtrate of broth, and fruit-
ing body of A. camphorata exhibit numerous physiological
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functions [3]. The fruiting body of A. camphorata consisted
of terpenoids, such as antcins (A, B, and C), zhankuic
acids (A, B, C, D, and E), 15𝛼-acetyl-dehydrosulphurenic
acid, dehydroeburicoic acid and dehydrosulphurenic acid,
antcin E and F, methyl antcinate G and methyl antcinate
H, and eburicoic acid. The solid culture of fruiting body
and the filtrate in submerged culture have been shown to
have hepatoprotective effects and antioxidant activities [4, 5].
Previous study had demonstrated that, in terms of in vivo
metabolism, 13 terpenoids inA. camphoratawere determined
by using LC/MS/MS in rats plasma after oral administration,
and plasma concentrations of ergostanoids weremuch higher
than lanostanoids, and the ergostanoids underwent reduction
and hydroxylation reactions in vivo [6].Theirmean residence
time (MRT) ranged from 3 to 6 hr, and the lanostanoids were
not active to metabolic reactions and were slowly eliminated
with an MRT of 9–16 hr [6]. Antcin K (3𝛼,4𝛽,7𝛽-trihydroxy-
4𝛼-methylergosta-8,24(28)-dien-11-on-26-oic acid, 2; AnK)
(Figure 1), an active triterpenoid from the fruiting bod-
ies of basswood cultivated A. cinnamomea, could induce
apoptotic cell death in human liver cancer Hep3B cells [7].
Antcin K isolated from ethanol extracts of wild fruiting
body has shown concentration-dependent (1–25Mm) anti-
inflammatory effects (by modulation of leukocyte activity
and inhibition of ROS) induced by fMLP and TPA in
human neutrophils [8, 9]. Our recent studies demonstrated
that ergostatrien-3𝛽-ol and dehydroeburicoic acid from A.
camphorata exhibited an excellent antihyperglycemic and
antihyperlipidemic activity [10, 11]. Nevertheless, the effects
of antcin K, the main constituent of the fruiting body of A.
camphorata, on diabetes and dyslipidemia are still unknown
in vitro and in diet-induced diabetic rodents.

The glucose transporter 4 (GLUT4) has been regarded
as a vital determinant of blood glucose homeostasis [12].
The elevated glucose levels, after huge caloric ingestions, are
rapidly returned to normal. Insulin stimulates or contraction
causes glucose uptake via eliciting translocation of GLUT4
from intracellular sites to the membrane [13, 14]. Levels
of insulin-induced GLUT4 translocation in skeletal muscle
of type 2 diabetic patients are markedly decreased [15].
Therefore, the improvement of GLUT4 levels or induced
translocation may accelerate drug development. Peripheral
glucose uptake into membrane of skeletal muscle could
be promoted by two pathways including insulin-dependent
mechanisms leading to Akt/PKB activation and contraction-
regulated stimulation [16, 17] or hypoxia-regulated AMPK
activation [17, 18]. AMPKplay a dominant role in glucose and
lipid metabolism. Since dysregulation of glucose and lipid
catabolism in type 2 diabetes, AMPK activators would be
promising therapies [19].

Metformin is used in the clinics as an antidiabetic drug in
themanagement of type 2 diabetes [19] and it activates AMPK
in both hepatocyte and skeletal muscle [19, 20].

Peroxisome proliferator-activated receptor 𝛼 (PPAR𝛼)
plays a key role in regulation of lipid metabolism [21]
and reduces circulating triglyceride (TG) concentrations via
regulated numerous genes associated with lipogenic and fatty
acids oxidation [22]. Fenofibrate is one of PPAR𝛼 agonists
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Figure 1: Chemical structure of antcin K (AnK).

and has been used in the treatment of hypertriglyceridemia
[23, 24].

The high-fat diet- (HFD-) fed C57BL/6J mouse could
induce early type 2 diabetes and markedly increased adipose
weights and produced resistance to insulin and increases
in blood glucose, total cholesterol (TC), and TG levels
[25–27]. Thus, this model was chosen to investigate both
mechanistic activities and as a tool for developing novel
therapeutic interventions [25]. Phosphorylation of Thr172 of
𝛼 subunits is essential for AMPK activity [28]. This study
was to screen firstly the potential effects of AnK in vitro
and further to investigate the hypothesis that AnK could
display the beneficial metabolic effects including antidiabetic
and hypolipidemic effects by modulation of GLUT4 protein
expression and activation of AMPK as comparedwith clinical
drugs such as Metf and Feno; moreover, the targeted gene
expressions were determined including PPAR𝛼 and fatty acid
synthase (FAS) from the peripheral tissues of HFD-fed mice
by the AnK treatment.

2. Materials and Methods

2.1. Chemicals. Antibodies of GLUT4 (number sc-79838)
were obtained from Santa Cruz Biotech (Santa Cruz, CA,
USA); phospho-AMPK (Thr172), PPAR𝛼 (number ab8934),
and PPAR𝛾 (number ab45036) were purchased from Abcam
Inc. (Cambridge, MA, USA); FAS (number 3180), phospho-
Akt (Ser473) (number 4060), total-AMPK (Thr172), and 𝛽-
actin (number 4970) were from Cell Signaling Technology
(Danvers, MA, USA). Secondary antibody anti-rabbit was
from Jackson ImmunoRes. Lab., Inc. (West Grove, PA, USA).

2.2. Determination of the Active Compound. The fruiting
body of A. camphorata was purchased from the Balay Bio-
technology Corporation, Hsinchu City, Taiwan. A voucher
specimen (CMPC393) was deposited at and identified by
China Medical University. The fruiting bodies of AC (3.0 kg)
were extracted three times with methanol and followed by
chromatography using 50% ethyl acetate and 50% hexane.
The procedure was as in a previously described report [29].
The purity of AnK is above 99%. Analytical instrument is the
HPLC, SHIMADZU LC 20-A; the HPLC Column, TOSOH
TSKgel DS-80Ts, and analytical condition, 100% MeOH.
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2.3. Cell Culture. C2C12 skeletal myoblasts (ATCC, CRL-
1772) were employed and performed as a previous report [11].

2.4. Detection of Expression Levels of Membrane GLUT4 and
Phosphorylation of Akt (Ser473) In Vitro. The procedure was
performed as a previous description [11, 30, 31]. Differentiated
C2C12 cells were serum-starved in DMEM/BSA prior to
incubation either with test compounds (AnK at 1, 5, 10, and
25 𝜇g/mL) or with vehicle for 30min or with 100 nM insulin
for 25min, as previously described [32]. The homogenates
were centrifuged and the pellet was resuspended and per-
formed within membrane; protein concentration was ana-
lyzed via BCA assay (Pierce), and equal amounts of protein
were then diluted four times in SDS sample buffer and sub-
jected to SDS PAGE and were detected by Western blotting
with antibodies specific for Akt, phospho-Akt Ser473, and
GLUT4; and the analysis of density blotting was as in a
previous report [11].

2.5. Animals and Treatments. The part of animal studies was
performed under the guidelines of the Institutional Animal
Care and Use Committee (12 March 2015). The C57BL/6J
mice (male) aged 4 weeks (total amount = 63) were obtained
from the National Laboratory Animal Breeding Center. All
rodents were haphazardly partitioned to control (CON)
group (control diet) (Diet 12450B, Research Diets, Inc.; low-
fat diet) (𝑛 = 9) and high-fat diet (HFD) (Diet 12451, Research
Diets, Inc.) group [10, 33, 34]. The low-fat diet was composed
of protein 20%, carbohydrate 70%, and fat 10%, whereas high-
fat diet was composed of protein 20%, carbohydrate 35%,
and fat 45% (of total energy, % kcal). The CON mice were
on the control diet, and the HFD mice were on 45% HFD
for 12 weeks [33]. The control diet or HFD is comprised of
10% fat or 45% fat, respectively. After HFD-induction for
8 weeks, the HFD-fed group (total amounts: 54 mice) was
again divided into 6 groups (𝑛 = 9, per group) as follows:
treatment with AnK (including AnK1: 10, AnK2: 20, and
AnK3: 40mg/kg/day bw), or fenofibrate (Feno: 0.25 g/kg/day
bw, Sigma Chemical Co.), or metformin (0.3 g/kg/day bw),
or vehicle with oral gavage one time every day for 28 days,
and the CON and high-fat control (HF) groups were given
only vehicle [10, 33]. After administration of AnK, Feno, or
Metf for 4 weeks, the mice (12 h fasting) were sacrificed and
peripheral tissues were weighed. Parts of tissues were imme-
diately stored at −80∘C for targeted genes analysis. Blood
glucose analysis and biochemical parameters (including TG,
TC, and FFA), adipocytokine (including insulin, adiponectin,
and leptin) levels, and metabolic parameters including body
weight, weight gain, and food intake were performed as
previous procedures [10, 11, 33].

2.6. Assessment of Blood Glucose and Biochemical Parameters.
Blood sample was obtained from the retro-orbital sinus of
12 h fasting mice. Blood glucose level (by the glucose oxidase
method); plasma TG, TC, and free fatty acids level (using
commercial assay kits); and insulin, leptin, and adiponectin
level (by enzyme-linked immunosorbent assay (ELISA) kits)
were measured as previous reports [11, 33, 35, 36].

2.7. Histopathology Examination. Parts of visceral adipose
and liver specimen were measured and pictures were taken
as previous reports [11, 33, 36].

2.8. Analysis of Liver Lipids. This procedure was performed
as in previous reports [37].

2.9. Relative Quantization of mRNA Indicating Gene Levels
and Western Blotting. These procedures of relative quan-
tization of mRNA (the primers are described in Table 1)
and immunoblots in the measurement of skeletal muscular
GLUT4, phospho-AMPK (Thr172)/total-AMPK (Thr172), or
phospho-Akt (Ser473)/total-Akt (Ser473) proteins from the
muscle and liver of mice were performed as previous proce-
dures elsewhere [10, 11, 33, 35, 36]. PPAR𝛼 and FAS proteins
were performed from the liver tissue and PPAR𝛾 and FAS
proteins from the adipose tissue of mice. Skeletal muscle
frommice was subjected to GLUT4 expression level analysis.
Total membrane fraction was measured; and the expression
levels of GLUT4, phospho-AMPK, and total-AMPK were
determined by Western blotting as in described reports [10,
11, 33, 35, 36].

2.10. Statistics. Results present means and standard error.
Comparisons among groupswere usingANOVAand coupled
with Dunnett’s tests. 𝑃 values less than 0.05 were regarded as
statistically significant differences.

3. Results

3.1. Membrane GLUT4 and Akt Phosphorylation Expression
In Vitro. The membrane GLUT4 expressions were higher in
the insulin- and AnK-treated (5, 10, and 25 𝜇g/mL) groups
than in the CON group.The phospho-Akt (Ser473)/total-Akt
expressions were higher in the insulin- and AnK-treated (10
and 25 𝜇g/mL) groups than in CON group (Figures 2(a) and
2(b)).

3.2. Metabolic Parameters. At the beginning, the average
body weights of all mice were 20.05±0.13 g. At the end, body
weight and body weight gain were markedly enhanced in
HFD-inducedmice (Table 2). AnK2-, AnK3-, or Feno-treated
mice had decreased body weight, while AnK1-, AnK2-,
AnK3-, Feno-, or Metf- treated groups had decreased body
weight gain. The HF mice consume less food intake than
CON mice (Table 2). No difference was found in food intake
between AnK-, Feno-, or Metf-treated groups and HF group.
Feeding a HFD displayed increases in absolute epididymal,
mesenteric, retroperitoneal white adipose tissue (WAT) and
visceral fat weights (Table 2). The AnK1-, AnK2-, AnK3-,
Feno-, orMetf-treated groups reduced epididymal, retroperi-
toneal WAT, mesenteric WAT, and visceral fat weights. Feno-
treated mice showed a decrease in brown adipose tissue
(BAT) weights, but increased weights of the liver (Table 2).

3.3. Fasting Blood Glucose Levels, Biochemical Parameters,
Adipocytokine Levels, and Liver Lipids. It is evident that
hyperglycemia has been observed after 12 weeks of HFD
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Table 1: Primers used in this study.

Gene Accession number Forward primer and reverse primer PCR product (bp) Annealing temperature (∘C)
Liver

G6 Pase NM 008061.3 F: GAACAACTAAAGCCTCTGAAAC
R: TTGCTCGATACATAAAACACTC 350 50

SREBP1c NM 011480 F: GGCTGTTGTCTACCATAAGC
R: AGGAAGAAACGTGTCAAGAA 219 48

DGAT2 NM 026384.3 F: AGTGGCAATGCTATCATCATCGT
R: AAGGAATAAGTGGGAACCAGATCA 149 50

apo C-III NM 023114.3 F: CAGTTTTATCCCTAGAAGCA
R: TCTCACGACTCAATAGCTG 349 47

SREBP2 AF289715.2 F: ATATCATTGAAAAGCGCTAC
R: ATTTTCAAGTCCACATCACT 256 48

PPAR𝛼 NM 011144 F: ACCTCTGTTCATGTCAGACC
R: ATAACCACAGACCAACCAAG 352 49

aP2 NM 024406 F: TCACCTGGAAGACAGCTCCT
R: TGCCTGCCACTTTCCTTGT 142 52

GAPDH NM 008084.3 F: TGTGTCCGTCGTGGATCTGA
R: CCTGCTTCACCACCTTCTTGA 99 55

Table 2: Effects of antcin K (AnK) on tissue weight, food intake, and liver lipid.

Dose
(mg/kg/day) CON HF HF + AnK1 HF + AnK2 HF + AnK3 HF + Feno HF + Metf

10 20 40 250 300
Absolute tissue weight (g)

EWAT 0.531 ± 0.052 1.264 ± 0.147### 0.867 ± 0.065∗∗ 0.841 ± 0.062∗∗ 0.809 ± 0.058∗∗∗ 0.603 ± 0.041∗∗∗ 0.813 ± 0.064∗∗∗

MWAT 0.278 ± 0.031 0.439 ± 0.025### 0.349 ± 0.020∗ 0.340 ± 0.013∗ 0.332 ± 0.025∗ 0.247 ± 0.025∗∗∗ 0.270 ± 0.018∗∗∗

RWAT 0.166 ± 0.021 0.483 ± 0.064### 0.323 ± 0.039∗ 0.339 ± 0.031∗ 0.306 ± 0.040∗ 0.181 ± 0.020∗∗∗ 0.298 ± 0.027∗∗

Visceral fat 0.697 ± 0.056 1.747 ± 0.208### 1.190 ± 0.093∗∗ 1.180 ± 0.106∗∗ 1.154 ± 0.096∗∗∗ 0.784 ± 0.052∗∗∗ 1.111 ± 0.077∗∗∗

Skeletal muscle 0.308 ± 0.014 0.412 ± 0.045 0.395 ± 0.036 0.364 ± 0.022 0.364 ± 0.028 0.428 ± 0.026 0.380 ± 0.025
BAT 0.158 ± 0.004 0.224 ± 0.022# 0.178 ± 0.007 0.172 ± 0.010 0.175 ± 0.008 0.157 ± 0.013∗ 0.220 ± 0.025
Liver (g) 1.003 ± 0.024 0.987 ± 0.029 0.946 ± 0.030 0.888 ± 0.019 0.883 ± 0.018 1.700 ± 0.070∗∗∗ 0.908 ± 0.031
Spleen (g) 0.099 ± 0.006 0.094 ± 0.004 0.090 ± 0.003 0.085 ± 0.003 0.104 ± 0.007 0.084 ± 0.005 0.093 ± 0.006
Final body
weight (g) 27.21 ± 0.47 30.43 ± 1.02# 28.30 ± 0.61 27.55 ± 0.72∗ 27.48 ± 0.46∗ 27.55 ± 0.84∗ 27.86 ± 0.72

Weight gain
(g) 1.61 ± 0.15 3.42 ± 0.24# 1.39 ± 0.81∗ 0.70 ± 0.86∗∗ 0.58 ± 0.35∗∗ 0.57 ± 0.55∗∗∗ 0.92 ± 0.08∗∗

Food intake
(g/day/mouse) 2.34 ± 0.04 1.99 ± 0.04### 1.95 ± 0.05 1.92 ± 0.07 1.98 ± 0.04 1.99 ± 0.06 1.89 ± 0.04

Liver lipids
Total lipid
(mg/g) 53.7 ± 2.7 95.9 ± 6.4### 73.1 ± 4.7∗∗ 66.0 ± 4.8∗∗ 64.5 ± 5.2∗∗ 64.9 ± 5.1∗∗ 65.3 ± 4.9∗∗

Triacylglycerol
(𝜇mol/g) 40.6 ± 3.9 79.3 ± 6.3### 56.3 ± 4.2∗∗ 45.7 ± 3.9∗∗∗ 45.2 ± 4.6∗∗∗ 47.3 ± 4.6∗∗∗ 45.4 ± 4.2∗∗∗

Antcin K (AnK; AnK1, AnK2, and AnK3, 10, 20, and 40mg/kg body wt); fenofibrate (Feno, 250mg/kg body wt); metformin (Metf, 300mg/kg body wt); BAT,
brown adipose tissue; skeletal muscle included quadriceps muscle, which contains four parts, rectus femoris, vastus intermedius, vastus lateralis, and vastus
medialis. All values are means ± SE (𝑛 = 9). #𝑃 < 0.05 and ###

𝑃 < 0.001 compared with the control (CON) group; ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, and ∗∗∗𝑃 < 0.001
comparedwith the high-fat plus vehicle (distilledwater) (HF) group. Epididymalwhite adipose tissue (epididymalWAT; EWAT), retroperitonealWAT (RWAT),
and mesenteric WAT (MWAT). Visceral fat represented epididymal WAT plus retroperitoneal WAT.

treatment (𝑃 < 0.001). Treatment with AnK1, AnK2, AnK3,
Feno, and Metf markedly lowered glucose levels in blood
(Figure 3(a)). HFD increased the levels of circulating TG,
total cholesterol (TC), and free fatty acid (Figures 3(b) and
3(c) and Table 2). The AnK1-, AnK2-, AnK3-, Feno-, or
Metf-treated mice had decreased TG, TC, and FFA levels.

Plasma insulin and leptin concentrations were higher, but
adiponectin levels were lower in the HF group than in the
CON group. The AnK1-, AnK2-, AnK3-, Feno-, and Metf-
treated mice had effectively reduced plasma leptin, insulin,
and FFA concentrations but markedly enhanced adiponectin
levels (Figures 3(d), 3(e), 3(f), and 3(g)). HFD enhanced
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Figure 2: Effect of antcin K (AnK) on GLUT4, phospho-Akt/total-
Akt, and phospho-AMPK/total-AMPK in vitro. C2C12 myoblasts
cells were treated with AnK compounds as described in the
experimental procedures and equal amounts of lysates were resolved
by SDS PAGE and blotted for GLUT4, Akt, phospho-Akt (Ser473),
AMPK, and phospho-AMPK (Thr172). (a) Representative blots for
AnK in C2C12 myoblasts cells; (b) quantification of the GLUT4
protein contents and the ratio of phospho-Akt to total-Akt and
phospho-AMPK to total-AMPK. All values are means ± SE. ∗∗∗𝑃 <
0.001 compared with the control group.

the levels of liver total lipids and triacylglycerol, and AnK1-,
AnK2-, AnK3-, Feno-, or Metf-treated mice had decreased
hepatic total lipid and triacylglycerol levels (Table 2).

3.4. Histopathology Examination. HFD caused adipocytes
hypertrophy (the following data were calculated average
areas: the CON mice, 6044.4 ± 359.1 𝜇m2; the HF group,
10142.9 ± 428.1) and following treatment with AnK1
(6548.6 ± 214.7 𝜇m2), AnK2 (6483.8 ± 319.8 𝜇m2), AnK3
(5670.8 ± 281.6 𝜇m2), Feno (6304.2 ± 316.9 𝜇m2), or Metf
(5873.7±345.1 𝜇m2) displayed less hypertrophy (Figure 4(a)).
On the basis of a previous study [38], the designation of
histological hepatocellular ballooning findings is comprised
of grade 0, none; grade 1, few cells; grade 2, many cells.
As shown in Figure 4(b), HFD induced the ballooning of

hepatocyte (mean score, 1.9 ± 0.1) as comparedwith theCON
group (0) in liver tissue. Administration of AnK1 (0.7 ± 0.2),
AnK2 (0.5 ± 0.2), AnK3 (0.4 ± 0.2), Feno (0.5 ± 0.1), orMetf
(0.7 ± 0.2) decreased the ballooning as comparedwith theHF
group.

3.5. Hepatic Targeted Gene mRNA Levels. HFD elicits
increases in G6 Pase, acyl-coenzyme A: diacylglycerol acyl-
transferase 2 (DGAT 2), SREBP1c, aP2, apolipoprotein CIII
(apo CIII), and SREBP2 mRNA levels. The AnK1-, AnK2-,
AnK3-, Feno-, or Metf-treated mice had decreased mRNA
levels of G6 Pase, DGAT2, SREBP1c, aP2, apo CIII, and
SREBP2 mRNA levels but increased PPAR𝛼 mRNA levels
(Figure 5).

3.6. Targeted Protein Expression Levels in Different Tissues.
HFD induced decreases in protein expression levels of
skeletal muscular membrane GLUT4 (𝑃 < 0.001). AnK1-,
AnK2-, AnK3-, Metf-, or Feno-treated groups enhanced
membrane GLUT4 expressions. HFD-induced mice had
decreased expression levels of phospho-AMPK/total-AMPK
or phospho-Akt/total-Akt in bothmuscle and the liver, which
were markedly enhanced in the AnK1-, AnK2-, AnK3-,
Metf-, or Feno-treated mice (Figure 6). HFD-fed mice had
decreased liver PPAR𝛼 expressions, but increased in FAS
levels. Treatment with AnK1, AnK2, AnK3, Feno, or Metf
increased PPAR𝛼 but decreased FAS expression levels in the
liver (Figure 6). The adipose PPAR𝛾 and FAS expressions
were increased in theHF group. Treatment withAnK1, AnK2,
AnK3, Feno, or Metf decreased PPAR𝛾 and FAS expression
levels in adipose tissue (Figure 7).

4. Discussion

Skeletal muscle and adipose tissue play unique roles in the
regulation of insulin-dependent glucose homeostasis [39].
Skeletal muscle is proposed to be the primary site of whole-
body insulin-mediated glucose uptake [15, 40, 41]. Adipose
tissue accounts for a small fraction of glucose disposal after a
meal, with the majority of glucose uptake by muscles [41, 42].
Therefore, this study was firstly designed to screen GLUT4
protein expression in in vitromyotubes. And we knew that if
in vitro study of the compound displays effectiveness, it can-
not be assumed to have the same effect in vivo, since it entered
physical body and underwent biotransformation including
absorption, distribution, metabolism, and excretion. Thus,
this study was focused on performance of targeted gene
protein expressions in different tissues of AnK-treated HFD-
fed mice. This study firstly observed that AnK treatment at 5,
10, and 25 𝜇g/mL in vitro significantly increased membrane
expression levels of GLUT4 in C2C12 myoblast cells. We
further undertake to assess whether AnK exhibit antidiabetic
and antihyperlipidemic activity employing the HFD animal
model since insulin resistance plays the majority of all
diabetes cases and to compare with the antidiabetic drug,
metformin, and the hypolipidemic drug, fenofibrate, which
has also been shown to display good glycemic control [43].
Here we observed that HFD-induction was in line with the
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Figure 3: Effects of antcin K (AnK) on (a) blood glucose levels, (b) blood triglycerides levels, (c) blood total cholesterol levels, (d) insulin
levels, (e) leptin levels, (f) adiponectin levels, and (g) blood FFA levels at week 12. Mice were fed with 45% high-fat diet (HF) or low-fat diet
(CON) for 12 weeks. After 8 weeks of induction, the HF mice were treated with vehicle, or antcin K, or fenofibrate (Feno), or metformin
(Metf) accompanied with HF diet for 4 weeks. All values are means ± SE (𝑛 = 9). ##𝑃 < 0.01 and ###

𝑃 < 0.001 compared with the control
(CON) group; ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, and ∗∗∗𝑃 < 0.001 compared with the high-fat diet plus vehicle (distilled water) (HF) group by ANOVA.
AnK (AnK1, AnK2, or AnK3, 10, 20, or 40mg/kg body wt); fenofibrate (Feno, 250mg/kg body wt); metformin (Metf, 300mg/kg body wt).
FFA, plasm free fatty acid; visceral fat represented epididymal WAT plus retroperitoneal WAT.

previous observation displaying increases in blood glucose,
triglyceride, total cholesterol, insulin, and leptin levels [26].
After the treatment, AnK exhibited both antidiabetic and
antihyperlipidemic effects in HFD-fed mice. AnK-treated
mice show the glucose-lowering effect by 26.8%–36.0%. Of
interest, the glucose-lowering effect of AnK at 40mg/kg
(with less than one-seventh of Meft dosage) was comparable
to that of metformin. Our results demonstrated that AnK
display good antidiabetic activities; moreover, AnK treat-
ment decreased blood insulin levels and finally improved
HFD- induced insulin resistance.These favorable antidiabetic
effects of AnK were owing to enhancement of insulin sensi-
tivity in peripheral tissues, particularly increased membrane
GLUT4 expressions in skeletal muscle and enhanced activa-
tion of AMPK in muscle and the liver.

In addition, all of the AnK-treated groups decreased
circulating triglyceride concentrations by 28.5%–32.8% com-
parable to that of Feno, which is a PPAR𝛼 agonist with
triglyceride-lowering effect [43]. The overall effects in HFD-
fed mice imply that AnK had therapeutic potential for the
management of type 2 diabetes accompanied with hyperlipi-
demia.

The first aim of this study was undertaken to assess
muscular membrane GLUT4 expressions following treating
HFD-fed mice with AnK. Skeletal muscle plays the major
site of whole-body insulin-mediated glucose uptake [15]. The
membrane GLUT4 expressions measured the translocation
of insulin responsive glucose transporter GLUT4 to the
plasma membrane [19]. In this study, treatment with AnK,
Feno, or Metf significantly increased membrane expression

levels GLUT4 by 1.52–2.20-, 1.98-, or 1.86- fold as compared
with the HF group, respectively, implying that the increased
membrane GLUT4 contents are enhanced to cause glucose
uptake, resulting in a decrease in blood glucose levels.

Evidence suggests that the C2C12 myotube is a useful
model for analyzing GLUT4 translocation in skeletal muscle
[44]. Akt (PKB) stimulates glucose uptake by modulating
glucose transporter 4 (GLUT4) [45]. The promoted glu-
cose uptake into skeletal muscle included two pathways:
insulin-dependent mechanisms lead to activation of Akt
and contraction-mediated stimulation of AMPK [12, 17].
In this in vitro experiment, our results showed that AnK
(between 1 and 25 𝜇g/mL) was not toxic to C2C12 myotubes
by employing the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide) assay (data not shown), and
AnK significantly enhanced membrane GLUT4 proteins
and phospho-AMPK/total-AMPK expressions at 5, 10, and
25 𝜇g/mL and enhanced phospho-Akt/total-Akt expressions
at 10 and 25 𝜇g/mL, andwe assume that AnK inmyotube cells
at 10 and 25 𝜇g/mL could stimulate glucose transport activity
partly by insulin pathway and partly by AMPK activation.

The second aim of this study was to evaluate the
phospho-AMPK protein expression in AnK-treated HFD-
fed mice, since AMPK plays the core role of glucose and
lipid metabolism. These data showed that AnK treatment
increased the expressions of phospho-AMPK/total-AMPK
in the muscle and liver. Metformin may enhance skele-
tal muscular AMPK activity [17, 46]. Chronic activation
of AMPK may induce GLUT4 deployment to the plasma
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Figure 4: Continued.
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Figure 4: Histology of (a) epididymal white adipose tissue and (b) liver tissue of mice in the control (CON), high-fat diet plus vehicle
(distilled water) (HF), HF + AnK1, HF + AnK2, HF + AnK3, HF + fenofibrate (Feno), or HF +metformin (Metf) groups by hematoxylin and
eosin-staining. Magnification: 10 (ocular) × 20 (object lens). Antcin K (AnK1, AnK2, or AnK3, 10, 20, or 40mg/kg body weight, resp.); Feno,
fenofibrate (250mg/kg body weight). Metf, metformin (300mg/kg body weight).
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Figure 5: Semiquantitative RT-PCR analysis on G6 Pase, DGAT2, PPAR𝛼, SREBP1c, aP2, apoCIII, and SREBP2 mRNA levels in liver tissue
of the mice by oral gavage antcin K (AnK1, AnK2, or AnK3, 10, 20, or 40mg/kg body weight, resp.); Feno, fenofibrate (250mg/kg body
weight); Metf, metformin (300mg/kg body weight): (a) representative image; (b, c) quantification of the ratio of target gene to GAPDH
mRNA expression. Total RNA (1𝜇g) isolated from tissue was reverse-transcribed by MMLV-RT; 10𝜇L of RT products was used as templates
for PCR. The expression levels of G6 Pase, DGAT2, PPAR𝛼, SREBP1c, aP2, apoCIII, and SREBP2 mRNA were measured and quantified by
image analysis. Values were normalized to GAPDH mRNA expression. All values are means ± SE (𝑛 = 9). ###𝑃 < 0.001 compared with the
control (CON) group; ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, and ∗∗∗𝑃 < 0.001 compared with the high-fat-diet plus vehicle (distilled water) (HF) group.

membrane, leading to insulin-independent glucose uptake
[17, 46, 47]. In skeletal muscle, AnK was found to increase
AMPK phosphorylation comparable to that of metformin,
suggesting that AnK activates AMPK orAkt phosphorylation
to increase GLUT4 translocation in muscles, which leads to a
decrease in systemic insulin resistance.

G6 Pase plays a key role in gluconeogenesis [48]. The
hepatic expression of mRNA level of G6 Pase is reduced
in AnK-treated mice. Collectively, our results imply that
AnK display glucose-lowering effects via enhanced muscular
GLUT4 proteins to increase glucose uptake and decreased
hepatic G6 Pase mRNA levels to suppress hepatic glucose
production.

The third aim of this study was to clarify the hypolipi-
demic effects andmechanisms ofAnK. Evidences have shown
that PPAR𝛼 are abundantly expressed in the liver tissue
and promoted fatty acids oxidation [49]. PPAR𝛼 agonists
have been proposed as a breakthrough in the management
of dyslipidemia to reduce blood triglyceride levels [43,
49]. In this study, AnK displayed antihypertriglyceridemic
effects. PPAR𝛼 ligands could reduce the expression of the
apo CIII gene [50], thus resulting in hypotriglyceridemic
effect. DGAT2 play a role in the final step of triglyceride
synthesis [51]. SREBP-1c, a key lipogenic transcription factor,
stimulates lipogenic enzyme expression and contributes to
fatty acids synthesis and TG accumulation [52]. Mice with
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Figure 6: GLUT4 protein contents in skeletal muscle or phospho-
Akt/t-Akt or phospho-AMPK (Thr172)/t-AMPK in liver and skeletal
muscle of the mice by oral gavage antcin K (AnK): (a) representative
image; (b) quantification of theGLUT4 expression levels, the ratio of
phospho-AMPK to total-AMPK, or phospho-Akt/t-Akt expression
levels (mean ± SE, 𝑛 = 9). Protein was separated by 12% SDS PAGE
detected by Western blot. #

𝑃 < 0.05 compared with the control
(CON) group; ∗𝑃 < 0.05 and ∗∗∗𝑃 < 0.001 compared with the high-
fat-diet plus vehicle (distilled water) (HF) group. Antcin K (AnK1,
AnK2, or AnK3, 10, 20, or 40mg/kg body weight, resp.); Feno,
fenofibrate (250mg/kg body weight); Metf, metformin (300mg/kg
body weight).

aP2 deficiency are protected from the development of dyslipi-
demia, hyperglycemia, insulin resistance, and fatty liver dis-
ease in both genetic and dietary obesity [53]. Ablation of aP2
and mall show enhanced liver accumulation of longer-chain
fatty acids, thus resulting in decreased SREBP1c expressions
and its several downstream lipogenic enzymes [53].We found

that hepatic mRNA levels of aP2 and lipogenic SREBP1c
are suppressed by AnK, thus also contributing to protecting
from HFD-induced insulin resistance and hepatic steatosis.
FAS is a critical focus in fatty acid synthesis [54]. SREBP2
play a core role in the regulation of cholesterol synthesis
[55]. AnK lowered plasma TC concentrations coincident
with reduced SREBP2 mRNA levels, implying AnK exerting
TC-lowering effect may be primarily due to a decrease of
cholesterol synthesis. Taken together, AnK-treated mice had
increased hepatic expression of PPAR𝛼 protein to enhance
fatty acids oxidation but decreased FAS protein to inhibit
fatty acids synthesis coincident with suppressed SREBP1c,
aP2, DGAT2, and apo CIII mRNAs, thus contributing to the
hepatic triglyceride output and leading to decreased plasma
triglycerides, hepatic steatosis, and total cholesterol levels.

In adipose tissue, PPAR𝛾 stimulated adipogenesis
and lipogenesis [56]. PPAR𝛾 is abundantly expressed in
adipocytes and its expression is markedly induced during
adipocyte differentiation [57]. Here we report that treatment
with AnK, Feno, or Metf decreased adipose expression
of PPAR𝛾 and FAS protein; as a result, adipogenesis and
fatty acids synthesis and lipid accumulation are reduced in
adipose tissue. Moreover, blood TG is fluctuating between
the liver and adipose tissue. Lipid could usually be stored
in the adipose tissue and the liver is the major organ of
lipid metabolism, presuming AnK could remove fat from
adipose tissue to peripheral tissues not only by increasing
lipid catabolism including inhibition of fatty acid synthesis
(FAS) and enhancement of fatty acid oxidation (PPAR𝛼) in
the liver, but also by inhibition of adipocyte adipogenesis
(PPAR𝛾) and FAS in adipose tissue, thus leading to reduced
TG levels in the liver, blood, and adipose tissue. Therefore,
in histology analysis, AnK treatment resulted in a decrease
in lipid accumulation in adipose tissue and liver and finally
reflected hepatic lipid drops almost invisible and a reduction
in adipocyte size.

Adiponectin level was found to decrease inHFD-fedmice
in this study. This observation is in line with the others
demonstrating that adiponectin levels are reduced in adults
or rodents with obesity and type 2 diabetes [58]. High levels
of adiponectin can predict enhanced insulin sensitivity of
both glucose and lipid metabolism [59]. Following AnK
administration, themice display significantly increased blood
levels of adiponectin, establishing that AnK could provide a
unique therapeutic advantage associated with the regulation
to improve insulin sensitivity. Moreover, studies have showed
that there is an inverse relationship between plasma leptin
or mRNA expression of leptin and insulin sensitivity [60].
In this study, leptin level is enhanced in HFD-fed mice,
in accordance with a previous report [61]. Treatment with
AnK markedly reduced the increase of leptin level. Thus,
AnK prevented HFD-induced abnormalities in leptin levels
and improved insulin resistance. Treatment with globular
domain of adiponectin increased glucose uptake and AMPK
activation [62]. Adiponectin is proposed to activate AMPK in
the liver, enhance glucose utilization and fatty acid oxidation,
and inhibit glucose production in the liver [63]. Admin-
istration of AnK significantly elevated phosphorylation of
AMPK. On the basis of the previous reports [62, 64], the
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Figure 7: Expression levels of PPAR𝛼 and FAS in the liver tissue and PPAR𝛾 and FAS in adipose tissue of mice by oral gavage antcin K: (a)
representative image; (b, c) quantification of the expression levels of PPAR𝛼 and FAS in the liver tissue and PPAR𝛾 and FAS in adipose tissue.
Protein was separated by 12% SDS PAGE detected by Western blot. ##𝑃 < 0.01 and ###

𝑃 < 0.001 compared with the control (CON) group;
∗
𝑃 < 0.05 and ∗∗∗𝑃 < 0.001 compared with the high-fat-diet plus vehicle (distilled water) (HF) group. Antcin K (AnK1, AnK2, or AnK3, 10,
20, or 40mg/kg body weight, resp.); Feno, fenofibrate (250mg/kg body weight); Metf, metformin (300mg/kg body weight).

AMPK phosphorylation by AnK may be associated with
adiponectin and/or leptin secretion.Thus, there is possibility
that AnK directly cause AMPK phosphorylation or act by
adiponectin-mediated activation of AMPK and PPAR𝛼 leads
to a reduction in hepatic gluconeogenesis and increased
muscle glucose uptake, resulting in reduced glucose levels in
vivo and increased fatty acid oxidation in both tissues.

In conclusion, AnK-treated mice had not only lowered
blood glucose and insulin, but also decreased triglyceride,
total cholesterol levels, and finally ameliorated insulin resis-
tance (Figure 8). Of interest, AnK at 40mg/kg/day dosage
displayed both antihyperglycemic effect comparable to Metf
(300mg/kg/day) and antihypertriglyceridemic effect com-
parable to Feno (250mg/kg/day). The antidiabetic effect of
AnK is due to significant increases in membrane GLUT4
expression levels in skeletal muscle to stimulate glucose

uptake coincident with decreases in G6 Pase mRNA levels
to inhibit hepatic glucose production, thus contributing to
glucose-lowering efficacy. In both skeletal muscle and liver
tissue, AnK-treated mice had increased AMPK activation.
AnK treatment exhibited inhibition of hepatic lipogenic FAS
expression but enhancement of fatty acid oxidation PPAR𝛼
expression coincident with reduced SREBP1cmRNA levels in
the liver, thus resulting in decreased plasma triglycerides and
total cholesterol levels. AnK activatesAMPKorAkt phospho-
rylation to increase GLUT4 translocation in muscles, which
leads to a decrease in systemic insulin resistance and to fat
accumulation in adipose tissue and liver. Additionally, the
ameliorated insulin resistance also improved the liver insulin
sensitivity (Akt activation). Our findings manifest that AnK
has a favorable therapeutic potential for the management of
type 2 diabetes associated with hyperlipidemia.
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Figure 8: A proposed mechanism for AnK to improve diabetes and hyperlipidemia.
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